a

Telegram

Instagram

تمامی حقوق این سایت برای شرکت ایمن سازان پیشرو محفوظ است.

8:30 - 17:00

ساعات کاری : شنبه تا چهارشنبه

88102518

تماس برای مشاوره رایگان

اینستاگرام

تلگرام

جستجو
فهرست
 

یادگیری عمیق در دوربین های تشخیص چهره

ایمن سازان پیشرو > مقاله آموزشی  > یادگیری عمیق در دوربین های تشخیص چهره

یادگیری عمیق در دوربین های تشخیص چهره

رفته رفته الگوریتم های هوش مصنوعی و یادگیری عمیق در حال بکار گرفته شدن در سیستم های تشخیص چهره هستند تا آنها را در شرایط نه چندان ایده آل به سیستم هایی کارآمدتر و دقیقتر تبدیل کنند. به همین شکل با پیشرفت های صورت گرفته در سخت افزار دوربین ها، یادگیری عمیق نیز در دوربین های تشخیص چهره گنجانده شده است.

یادگیری عمیق به شما کمک میکند تا عمل استخراج ویژگی ها را با کمترین/بدون تداخل دست، خود کامپیوتر انجام دهد. حال استخراج ویژگی ها به چه معناست؟ استخراج ویژگی فرایندی است که در آن با انجام عملیاتی بر روی داده‌ها، ویژگی‌های بارز و تعیین‌کنندهٔ آن مشخص می‌شود. هدف استخراج ویژگی این است که داده‌های خام به شکل قابل استفاده‌تری برای پردازش‌های آماری بعدی درآیند. هر چه تعداد ویژگی های استخراج شده که شامل ویژگی های دشوار برای توصیف اند بیشتر باشد، فرآیند تشخیص دقیقتر میشود. به همین دلیل است که موتورهای تشخیص چهره بیشتر از قبل در حال بکارگیری یادگیری عمیق برای بهبود دقت سیستم ها هستند.

در طول 5 سال گذشته تکنولوژی های هوش مصنوعی که با شبکه های عصبی کار میکرده اند، تقریبا به صورت کامل تمامی چیزهای دیگر را تحت الشعاع قرار داده اند. مخصوصا در شرایط نامطلوب، سیستم های تشخیص چهره به سیستم های قابل اطمینان تری تبدیل شده اند. در حال حاضر تمامی راهکارهای کارآمد موجود در بازار بر مبنای تکنولوژی های هوش مصنوعی و یادگیری عمیق هستند. این تکنولوژی ها با توجه به کیفیت تشخیصی خود، الگوریتم های قدیمی را به کنار رانده اند. و در صورتی که به سرعت رشد آنها نگاه بیاندازید، دیگر هیچ کس بکارگیری الگوریتم های قدیمی را جدی نمیگیرد.

وظیفه ی اصلی سیستم های تشخیص چهره این است که تصویری از یک چهره تهیه کرده و آن را به یک سری ویژگی ها تبدیل کنند. شاید بخواهید که ویژگی های ایجاد شده  از دو تصویر از یک فرد را تا جای ممکن (فارغ از میزان روشنایی، حالت چهره و سایر عوامل گیج کننده) به یکدیگر نزدیک کنید و درعین حال از ایجاد ویژگی های کاملا مختلف در دو تصویر از دو فرد مختلف اطمینان حاصل کنید. با داشتن داده ها و محاسبات کافی، یک شبکه عصبی میتواند به مراتب کار بهتری نسبت به یک سیستم طراحی شده با دست انجام دهد. در مقایسه با طراحان انسانی، شبکه های عصبی میتوانند از ویژگی های پیچیده تر و غیرشهودی-تری استفاده کنند. این تغییر در تکنولوژی به تازه واردها این اجازه را میدهد که در بازار تشخیص چهره قادر به رقابت باشند، چرا که دانش سازمانی انباشته شده از تکنیک های قبلی از اهمیت کمتری برخوردار است.

و هر روز تعداد بیشتری از تولیدکنندگان دوربین های تشخیص چهره از یادگیری عمیق در تولید محصولات خود استفاده میکنند.

موارد ذیل برخی از مستقیم ترین مزیت هایی است که الگوریتم های یادگیری عمیق قادر به ارائه آن هستند: کسب دقت تشخیص قابل قیاس و یا حتی بهتر از الگوهای انسانی، قابلیت های ضد ایجاد تداخل قوی و قابلیت طبقه بندی و تشخیص هزاران ویژگی. با کمک تکنولوژی یادگیری عمیق، میانگین دقت تشخیص چهره به شکل قابل توجهی، یعنی 38 درصد افزایش می یابد.

الگوریتم هوش مصنوعی اساسا برای تکمیل تشخیص چهره و مقایسه ی کل فرآیند استفاده میشود. الگوریتم یادگیری عمیق که بر اساس آموزه های کلان داده ها کار میکند قادر به بالا بردن دقت تشخیص چهره است، که بعدها از آن میتوان در فضاهای پیچیده تری چون کیفیت پایین تصاویر و زوایای عریض تر بکار بست.

توصیه هایی برای خرید و نصب دوربین های تشخیص چهره

به هنگام انتخاب دوربین های تشخیص چهره، برای خرید محصول درست و با قیمت مناسب، چند چیز را باید مورد توجه قرار داد. نصابان سیستم ها باید به دقت تشخیص، ظرفیت گالری تصاویر چهره از روبرو، حداکثر تعداد چهره های زیر یک اسکرین، ضروریات نصب (ارتفاع، زاویه، دامنه تشخیص) و قابلیت سازگاری آنها با فضاهای پروژه ای پیچیده توجه بیشتری کنند.

چگونگی نصب دوربین ها نیز برای کسب مطلوبترین نتیجه از اهمیت بالایی برخوردار است. نصابان سیستم ها باید با توجه به پارامترهای حقیقی دوربین، نوع دوربین و نیازهای بیزینسی واقعی مشتریان به نصب و بکارگیری دوربین ها بپردازند. معمولا این افراد باید از فضاهایی چون نور پشتی شدید، زاویه مورب بزرگ، تاریکی، فاصله، نصب پایه ناپایدار و قطع و وصلی منبع تغیه دوری کنند.

بدون دیدگاه

دیدگاه خود را بنویسید